PID controller - translation to russian
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

PID controller - translation to russian

CONTROL LOOP MECHANISM USED IN CONTROL ENGINEERING
PID loop; Proportional-Integral-Derivative controller; PID tuning; PID algorithm; Proportional integral derivative; PI controller; PD controller; PID control; PI Controller; Pi controller; Pidc; PID Controller; Proportional–integral–derivative controller; P.I.D. control; Droop (control); Proportional-integral-derivative controller; PID feed back controller; PID feedback controller; Three term controller; Steady-state error
  • Showing the evolution of analog control loop signaling from the pneumatic to the electronic eras
  • Response of PV to step change of SP vs time, for three values of ''K''<sub>d</sub> (''K''<sub>p</sub> and ''K''<sub>i</sub> held constant)
  • Response of PV to step change of SP vs time, for three values of ''K''<sub>i</sub> (''K''<sub>p</sub> and ''K''<sub>d</sub> held constant)
  • Proportional control using nozzle and flapper high gain amplifier and negative feedback
  • Effects of varying PID parameters (K<sub>p</sub>,K<sub>i</sub>,K<sub>d</sub>) on the step response of a system
  • A [[block diagram]] of a PID controller in a feedback loop. ''r''(''t'') is the desired process value or setpoint (SP), and ''y''(''t'') is the measured process value (PV).
  • PID with derivative filtering
  • PID without derivative filtering
  • Response of PV to step change of SP vs time, for three values of ''K''<sub>p</sub> (''K''<sub>i</sub> and ''K''<sub>d</sub> held constant)
  • Basic block of a PI controller
  • alt=
  • Early PID theory was developed by observing the actions of [[helmsmen]] in keeping a vessel on course in the face of varying influences such as wind and sea state.
  • Current loops used for sensing and control signals. A modern electronic "smart" valve positioner is shown, which will incorporate its own PID controller.

PID controller         
ПИД-регулятор, пропорционально-интегральный (изодромный) регулятор с предварением
PID controller         

строительное дело

ПИД-регулятор, пропорционально-интегральный (изодромный) регулятор с предварением

three term controller         

строительное дело

ПИД-регулятор, пропорционально-интегральный (изодромный) регулятор с предварением

Definition

disk controller
<hardware, storage> (Or "hard disk controller", HDC) The circuit which allows the CPU to communicate with a {hard disk}, floppy disk or other kind of disk drive. The most common disk controllers in use are IDE and SCSI controllers. Most home personal computers use IDE controllers. High end PCs, workstations and network {file servers} mostly have SCSI adaptors. (1998-03-16)

Wikipedia

PID controller

A proportional–integral–derivative controller (PID controller or three-term controller) is a control loop mechanism employing feedback that is widely used in industrial control systems and a variety of other applications requiring continuously modulated control. A PID controller continuously calculates an error value e ( t ) {\displaystyle e(t)} as the difference between a desired setpoint (SP) and a measured process variable (PV) and applies a correction based on proportional, integral, and derivative terms (denoted P, I, and D respectively), hence the name.

In practical terms, PID automatically applies an accurate and responsive correction to a control function. An everyday example is the cruise control on a car, where ascending a hill would lower speed if constant engine power were applied. The controller's PID algorithm restores the measured speed to the desired speed with minimal delay and overshoot by increasing the power output of the engine in a controlled manner.

The first theoretical analysis and practical application of PID was in the field of automatic steering systems for ships, developed from the early 1920s onwards. It was then used for automatic process control in the manufacturing industry, where it was widely implemented in pneumatic and then electronic controllers. Today the PID concept is used universally in applications requiring accurate and optimized automatic control.

What is the Russian for PID controller? Translation of &#39PID controller&#39 to Russian